O K L A H O M A S T A T E U N I V E R S I T Y SCHOOLOF ELECTRICALAND COMPUTERENGINEERING

ECEN 5713 System Theory
Fall 1997
Final Exam

Name : \qquad

Student ID: \qquad

E-Mail Address: \qquad

Problem 1:

Find the observable canonical form realization (in minimal order) from continuous-time system

$$
\frac{d^{4} y(t)}{d t^{4}}+3 t \frac{d^{3} y(t)}{d t^{3}}+4 \frac{d^{2} y(t)}{d t^{2}}+2 \frac{d y(t)}{d t}+\alpha(t) y(t)=\frac{d^{2} u(t)}{d t^{2}}+e^{-t} \frac{d u(t)}{d t}+u(t)
$$

Notice that gain blocks may be time dependent.

Problem 2:

Show that if λ is an eigenvalue of a matrix A with corresponding eigenvector v, then $f(\lambda)$ is an eigenvalue of the matrix function $f(A)$ with the same eigenvector v.
(Hint: given $A v=\lambda v$ and show $f(A) v=f(\lambda) v)$

Problem 3:

Let

$$
C=\left[\begin{array}{lll}
\lambda & 1 & 0 \\
0 & \lambda & 0 \\
0 & 0 & \lambda
\end{array}\right],
$$

find a matrix B and existing condition, such that $e^{B}=C$. Is it true that for any nonsingular matrix C , there exists a matrix B such that $e^{B}=C$. Justify your answer.

Problem 4:

For the Jordan block given by

$$
J=\left[\begin{array}{ccccc}
\lambda & 1 & 0 & \cdots & 0 \\
0 & \lambda & 1 & \cdots & 0 \\
\vdots & \vdots & \vdots & \ddots & \vdots \\
0 & 0 & 0 & \cdots & 1 \\
0 & 0 & 0 & \cdots & \lambda
\end{array}\right],
$$

where $J \in \mathfrak{R}^{t \star t}$, show that

$$
J^{k}=\left[\begin{array}{ccccc}
\lambda^{k} & k \lambda^{k-1} & \frac{k(k-1)}{2!} \lambda^{k-2} & \cdots & \frac{k(k-1) \cdots(k-t+2)}{(t-1)!} \lambda^{k-(t-1)} \\
0 & \lambda^{k} & k \lambda^{k-1} & \cdots & \frac{k(k-1) \cdots(k-t+1)}{(t-2)!} \lambda^{k-(t-2)} \\
\vdots & \vdots & \vdots & \ddots & \vdots \\
0 & 0 & 0 & \cdots & k \lambda^{k-1} \\
0 & 0 & 0 & \cdots & \lambda^{k}
\end{array}\right]
$$

where $k \geq t-1$.

